Respuesta :

We will find x for the given equations:

a) 3x - 5 = 0

so, the solution will be as follows:

[tex]\begin{gathered} 3x-5=0 \\ 3x=5 \\ x=\frac{5}{3} \end{gathered}[/tex]

b) |3x-5| = 0

It is an absolute function equation and

it will give the same solution as part (a)

So,

[tex]x=\frac{5}{3}[/tex]

c) 3x - 5 = 1

the solution will be as follows:

[tex]\begin{gathered} 3x-5=1 \\ 3x=1+5 \\ 3x=6 \\ x=\frac{6}{3}=2 \end{gathered}[/tex]

d) |3x - 5| = 1

So, writing the equation according to the absolute value rule

[tex]\begin{gathered} 3x-5=\pm1 \\ \text{when,}3x-5=1\rightarrow3x=6\rightarrow x=\frac{6}{3}=2 \\ \text{when,}3x-5=-1\rightarrow3x=4\rightarrow x=\frac{4}{3} \end{gathered}[/tex]

so, the answer will be x = 2, 4/3