Work each problem according to the instructions given.a. Solve: 3x - 5 = 0b. Solve: |3x - 5| = 0c. Solve: 3x - 5 = 1d. Solve: |3x - 5| = 1

We will find x for the given equations:
a) 3x - 5 = 0
so, the solution will be as follows:
[tex]\begin{gathered} 3x-5=0 \\ 3x=5 \\ x=\frac{5}{3} \end{gathered}[/tex]b) |3x-5| = 0
It is an absolute function equation and
it will give the same solution as part (a)
So,
[tex]x=\frac{5}{3}[/tex]c) 3x - 5 = 1
the solution will be as follows:
[tex]\begin{gathered} 3x-5=1 \\ 3x=1+5 \\ 3x=6 \\ x=\frac{6}{3}=2 \end{gathered}[/tex]d) |3x - 5| = 1
So, writing the equation according to the absolute value rule
[tex]\begin{gathered} 3x-5=\pm1 \\ \text{when,}3x-5=1\rightarrow3x=6\rightarrow x=\frac{6}{3}=2 \\ \text{when,}3x-5=-1\rightarrow3x=4\rightarrow x=\frac{4}{3} \end{gathered}[/tex]so, the answer will be x = 2, 4/3