A positive number is 5 larger than another positive number, the sum of the squares of the two positive number is 53. Find the numbers. Show how you found the solutions

Respuesta :

Let:

x = 1st unknown number

y = 2nd unknown number

A positive number is 5 larger than another positive number:

[tex]x=5y_{\text{ }}(1)[/tex]

the sum of the squares of the two positive number is 53:

[tex]x^2+y^2=53_{\text{ }}(2)[/tex]

Replace (1) into (2):

[tex]\begin{gathered} (5y)^2+y^2=53 \\ 25y^2+y^2=53 \\ 26y^2=53 \\ y^2=\frac{53}{26} \\ y=\pm\sqrt[]{\frac{53}{26}} \\ \end{gathered}[/tex]

Replace y into (1):

[tex]x=\pm5\sqrt[]{\frac{53}{26}}[/tex]

Since the numbers are positive:

[tex]\begin{gathered} x=5\sqrt[]{\frac{53}{26}} \\ y=\sqrt[]{\frac{53}{26}} \end{gathered}[/tex]