Respuesta :

Let the number be x

Then square x means

[tex]x^2[/tex]

Now we need to subtract 45 from it, then

[tex]x^2-45[/tex]

The result means equating it by 4 times the number, which means 4 times x

[tex]\begin{gathered} x^2-45=4\times x \\ \\ x^2-45=4x \end{gathered}[/tex]

Subtract 4x from each side

[tex]\begin{gathered} x^2-4x-45=4x-4x \\ \\ x^2-4x-45=0 \end{gathered}[/tex]

We will factor the left side

[tex]\begin{gathered} x^2=(x)(x) \\ \\ -45=(5)(-9) \\ \\ (x)(5)+(x)(-9)=5x-9x=-4x \\ \\ x^2-4x-45=(x+5)(x-9) \end{gathered}[/tex]

Then the equation is

[tex](x+5)(x-9)=0[/tex]

Equate each factor by 0

[tex]\begin{gathered} x+5=0 \\ \\ x+5-5=0-5 \\ \\ x=-5 \end{gathered}[/tex]

The negative solution is -5

The number is -5