Respuesta :

Solution:

Consider the following equation:

[tex]x^4-6x^2-7x-6=0[/tex]

First, to solve this equation, we must factor it:

[tex](x+2)(x-3)(x^2+x+1)=0[/tex]

using the zero factor theorem, the following must be met:

Equation 1:

[tex](x+2)=0[/tex]

or

Equation 2:

[tex](x-3)=0[/tex]

or

Equation 3:

[tex](x^2+x+1)=0[/tex]

From equation 1, solving for x, we obtain:

[tex]x\text{ = -2}[/tex]

or from equation 2, solving for x, we obtain:

[tex]x\text{ = 3}[/tex]

Now, remember the following quadratic formula to find the solutions of a quadratic equation:

[tex]\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

applying this to equation 3, where

a = 1

b= 1

and

c = 1

we obtain:

[tex]\frac{-1\pm\sqrt[]{1-4}}{2}=\frac{-1\pm\sqrt[]{-3}}{2}=\frac{-1\pm\sqrt[]{3}i\text{ }}{2}=-\frac{1}{2}\pm\frac{\sqrt[]{3}i\text{ }}{2}[/tex]

then, we obtain two additional solutions:

[tex]-\frac{1}{2}+\frac{\sqrt[]{3}i\text{ }}{2}[/tex]

or

[tex]-\frac{1}{2}-\frac{\sqrt[]{3}i\text{ }}{2}[/tex]

so that, we can conclude that the correct answer is:

The solutions (zeros) for the given equation are:

[tex]x\text{ = -2}[/tex]

[tex]x\text{ = 3}[/tex]

[tex]-\frac{1}{2}+\frac{\sqrt[]{3}i\text{ }}{2}[/tex]

[tex]-\frac{1}{2}-\frac{\sqrt[]{3}i\text{ }}{2}[/tex]