Simplify the expression below by rationalizing the denominator. Leave your answer in exact form \frac{a \sqrt[]{b}}{c} . \sqrt[]{ \frac{81}{5} } simplifies to \frac{a \sqrt[]{b}}{c} Our value for a is AnswerOur value for b is AnswerOur value for c is Answer

Simplify the expression below by rationalizing the denominator Leave your answer in exact form fraca sqrtbc sqrt frac815 simplifies to fraca sqrtbc Our value fo class=

Respuesta :

Answer:

The values for a, b and c are;

[tex]\begin{gathered} a=9 \\ b=5 \\ c=5 \end{gathered}[/tex]

Explanation:

Given the expression;

[tex]\sqrt[]{\frac{81}{5}}[/tex]

To simplify;

[tex]\frac{\sqrt[]{81}}{\sqrt[]{5}}=\frac{9}{\sqrt[]{5}}[/tex]

Rationalizing, we have;

[tex]\frac{9}{\sqrt[]{5}}\times\frac{\sqrt[]{5}}{\sqrt[]{5}}=\frac{9\sqrt[]{5}}{5}[/tex]

Expressing the expression in the form;

[tex]\frac{a\sqrt[]{b}}{c}=\frac{9\sqrt[]{5}}{5}[/tex]

Therefore, the values for a, b and c are;

[tex]\begin{gathered} a=9 \\ b=5 \\ c=5 \end{gathered}[/tex]