Respuesta :

we have the function

[tex]f\left(x\right)=2^{x}\cos x[/tex]

Find out the critical points

so

Find out the first derivative

[tex]f^{\prime}(x)=ln2*2^xcosx-2^xsinx[/tex]

Equate the first derivative to zero

[tex]\begin{gathered} ln2*2^xcosx-2^xsinx=0 \\ ln2=\frac{2^xsinx}{2^xcosx} \\ \\ ln2=tanx \end{gathered}[/tex]

the value of the tangent is positive

that means

the angle x lies on the I quadrant or III quadrant

but remember that the interval is [0, pi]

therefore

The angle x lies on the quadrant

[tex]\begin{gathered} tanx=ln2 \\ x=0.2\pi\text{ radians} \end{gathered}[/tex]

The critical point is x=0.2pi radians

Find out the second derivative

[tex]f^{\prime}^{\prime}(x)=ln^22*2^xcosx-ln2*2^{x+1}*sinx-2^xcosx[/tex]

Evaluate the second derivative at x=0.2pi radians

The value of the second derivative is negative

so

The concavity is down

that means

The critical point is a local maximum in the given interval