Solution
Let C(n, r) denotes the combination of n object selecting r and it is defined as
[tex]C(n,r)=\frac{n!}{(n-r)!r!}[/tex]The number of ways will be
[tex]\begin{gathered} Number\text{ }Of\text{ }Ways=C(10,4)\times C(38,3) \\ \\ Number\text{ }Of\text{ }Ways=\frac{10\times9\times8\times7\times6!}{6!4!}\times\frac{38\times37\times36\times35!}{35!3!} \\ \\ Number\text{ }Of\text{ }Ways=210\times8436 \\ \\ Number\text{ }Of\text{ }Ways=1771560 \end{gathered}[/tex]