1 一号尽0095) Minimene marrowton varas- Identify the vertex, axis of symmetry, and min/max value of each. 11) f(x)=3D31² - 54x+ 241 12) f(x) = x - 18 x + 86 3 a=3 -MY PUM micma.T> どうしてい ないなーんいる H25 Xに会い20、20~ vener Lague いこまで-164すらしかっ feedera-Sa+SC-8-8)

1 一号尽0095 Minimene marrowton varas Identify the vertex axis of symmetry and minmax value of each 11 fx3D31 54x 241 12 fx x 18 x 86 3 a3 MY PUM micmaTgt どうしてい ない class=

Respuesta :

EXPLANATION

Given the algebraic expression f(x)=x^2 -12x + 44

In order to identify the vertex we need to apply the following equation:

[tex]\text{vertex}=x_v=-\frac{b}{2a}[/tex]

In this case, a=1, b=-12 and c=44

Replacing terms:

[tex]x_v=-\frac{-12}{2\cdot1}[/tex]

Simplifying:

[tex]x_v=\frac{12}{2}=6[/tex]

The vertex is at point x=6

Plug in x=6 to find the y_v value:

[tex]y_v=6^2-12\cdot6+44=36-72+44=8[/tex]

Therefore, the vertex of the parabola is:

Vertex= (6,8)

Minimum is (6,8) because a=1>0, and then the vertex is a minimum.

Axis of simmetry:

Rewrite the equation in the standard form:

[tex]4p(y-k)=(x-h)^2\text{ with vertex at (h,k) and a focal length p}[/tex][tex]4\frac{1}{4}(y-8)=(x-6)^2[/tex]

Therefore the parabola properties are (h,k)=(6,8) , p=1/4

Parabola is of the form 4p(y-k)=(x-h)^2 and is symmetric around the y-axis

Axis of simmetry is a line parallel to the y-axis wich intersct the vertex.

x=6