Step 1
State formula for Power
[tex]\begin{gathered} \text{Power =}\frac{work}{\Delta time} \\ \text{But work = Force(F)}\times Dis\tan ce(S)\text{ for rectilinear motion} \\ \end{gathered}[/tex]Hence,
[tex]\begin{gathered} \text{Power}=\frac{F\times S}{\Delta Time(t)} \\ \text{Also Force(F) for rectilinear motion}=\text{Mass(M)}\times acceleration(a) \\ \text{Hence,} \\ \text{Power}=\text{ }\frac{M\times a\times S}{\Delta t} \end{gathered}[/tex]Step 2
Determine the power delivered by the hiker.
[tex]\begin{gathered} \text{Power}=\frac{M\times a\times S}{\Delta t} \\ M=\text{mass = 55.9kg} \\ a=\text{ rectilinear acc}eleration\text{ = 1.0m/s} \\ S=\text{distance}=46.6m \\ \Delta t=373s \end{gathered}[/tex][tex]\begin{gathered} \text{Power}=\frac{55.9\times1.0\times46.6}{373} \\ \end{gathered}[/tex][tex]\begin{gathered} \text{Power}=6.983753351 \\ \text{Power }\approx\text{ 6.984 Joules(J)/Seconds(s) or Watts(w) to 3 decimal places} \\ \end{gathered}[/tex]Hence the power delivered by the hiker to 3 decimal places is approximately 6.984 J/s or watts