Respuesta :

Given:

Circumference of the circle = 832.38 cm

Central angle = 333°

Let's find the length of the arc of the circle.

To find the length of the arc, apply the formula below:

[tex]\text{Length of arc = }\frac{\theta}{360}\ast2\pi r[/tex]

Where:

θ = 333°

2πr = circumference = 832.38 cm

Thus, we have:

[tex]\text{Length of arc = }\frac{333}{360}\ast832.38[/tex]

Solving further:

[tex]\begin{gathered} \text{Length of arc = }0.925\ast832.38 \\ \\ \text{Length of arc = }769.95\text{ cm}\approx770.0\text{ cm} \end{gathered}[/tex]

Therefore, the length of the arc of the circle to the nearest tenth is 770.0 cm

ANSWER:

770.0 cm