Respuesta :

continuous exponential growth model

[tex]A=Pe^{r\cdot t}[/tex]

since the size of the sample doubled:

A/P = 2

r = 8.5% = 0.085

e: eurler's number = 2.71828...

therefore,

[tex]\begin{gathered} \frac{A}{P}=e^{r\cdot t} \\ 2=e^{0.085\cdot t} \end{gathered}[/tex]

apply the law of exponents

[tex]\ln \mleft(2\mright)=0.085t[/tex][tex]t=\frac{\ln\left(2\right)}{0.085}[/tex]

So, t = 8.15467...

rounding to the nearest hundred

t = 8.15