Respuesta :

anGiven the infinite series:

[tex]\sum ^{\infty}_{n\mathop=1}(\frac{2n!}{2^{2n}})[/tex]

You need to remember that, by definition, given an infinite series:

[tex]\sum ^{\infty}_{n\mathop=1}a_n[/tex]

(a) The formula for applying the Ratio Test is:

[tex]\lim _{n\rightarrow\infty}\frac{|a_{n+1}|}{|a_n|}=L[/tex]

By definition:

1. If:

[tex]L<1[/tex]

The series converges.

2. If:

[tex]L>1[/tex]

Or:

[tex]L=\infty[/tex]

The series diverges.

3. If:

[tex]L=1[/tex]

The Ratio Test is inconclusive.

Therefore, you need to set up:

[tex]\lim _{n\rightarrow\infty}\frac{2(n+1)!}{2^{2(n+1)}_{}}\cdot\frac{2^{2n}_{}}{2n!}[/tex]

Simplifying, you get:

[tex]\lim _{n\rightarrow\infty}\frac{2(n+1)!}{2^{2(n+1)}_{}}\cdot\frac{2^{2n}_{}}{2n!}=\frac{(n+1)!}{n!}\cdot\frac{2^{2n}}{2^{2(n+1)}}=(n+1)\cdot2^{2n-2n-2}=(n+1)\cdot2^{-2}=\infty[/tex]

(b) Notice that:

[tex]r=\infty[/tex]

Therefore, this indicates that the series diverges.

Hence, the answers are:

(a)

[tex]r=\infty[/tex]

(b) It tells that the series diverges.