The point on a pin has a diameter of approximately 1 x 10^-4 meters. If a neon atom has a diameter of about 7.0 x 10^-11 meters, how many neon atoms could fit across the diameter of the point of a pin?

Respuesta :

Diameter of pin = 1 x 10^4

Diameter of neon atom = 7.0 x 10^11

To find the number of neon atoms

The formula below will be used

[tex]\text{number of atoms }=\frac{diameter\text{ of pin}}{diameter\text{ of neon}}[/tex]

Substituting values, it follows

[tex]n\text{umber of atoms }=\frac{1\times10^{-4}}{7.0\times10^{-11}}[/tex]

Simplify the expression

[tex]\begin{gathered} \text{number of atoms }=\frac{1}{7}\times10^{-4-(-11)} \\ \text{number of atoms }=\frac{1}{7}\times10^{-4+11} \\ \text{number of atoms }=\frac{1}{7}\times10^7 \\ \text{number of atoms }=0.143\times10^7 \end{gathered}[/tex]

Therefore, the number of atoms is 0.143 x 10^7