Find the measure of the arc or angle indicated. Assume that lines which appeartangent are tangent.Find m2 KIL7x - 10СMJL7x-2K8x - 6Measure of Angle KJL =degrees

Respuesta :

From the figure, the following are given:

Arc KL = 8x - 6

Arc MC = 7x - 10

∠KJL = 7x - 2

To be able to find the measure of ∠KJL, let's first determine the value of x. We will be using the following equation for Arc Length and Angles:

[tex]\angle KJL\text{ = }\frac{1}{2}(Arc\text{ KL + Arc MC})[/tex]

We get,

[tex]7x-2\text{ = }\frac{1}{2}(8x-6\text{ + 7x - 10})[/tex][tex]7x-2\text{ = }\frac{1}{2}(15x-16)[/tex][tex](2)(7x-2)\text{ = }(15x-16)[/tex][tex]14x-4\text{ = }15x-16[/tex][tex]16-4\text{ = }15x-\text{ 14x}[/tex][tex]\text{ 12}^{\circ}\text{ = x}[/tex]

Let's determine the measure of ∠KJL.

∠KJL = 7x - 2

= 7(12) - 2

= 84 - 2

∠KJL = 82°

Therefore, the measure of ∠KJL is 82°