To stretch a function f(x) horizontally by a factor c we have to follow the rule:
[tex]y=f(\frac{x}{c})[/tex]So, in this case, the function f(x) stretch by a factor of 3 woulb be:
[tex]\begin{gathered} y=-7(\frac{x}{3})+9 \\ =-\frac{7}{3}x+9 \end{gathered}[/tex]To translate up a function f(x) by c units, we have to follow the rule:
[tex]y=f(x)+c[/tex]
Applying this to our function y, and renaming it g(x), we have
[tex]\begin{gathered} g(x)=-\frac{7}{3}x+9+5 \\ =-\frac{7}{3}x+14 \end{gathered}[/tex]So our function g(x) will be
[tex]g(x)=-\frac{7}{3}x+14[/tex]