Let 'x' represents the advance ticket,
Let 'y' represents the same-day ticket.
Therefore,
The combined cost of one advance ticket and the same ticket is $60, and it can be represented mathematically below.
[tex]x+y=\text{ \$60}\ldots\ldots.(1)[/tex]
Secondly, the sum of 25 advance tickets and 40 same-day tickets is $2025. Mathematically,
[tex]25x+40y=\text{ \$2025}\ldots\ldots..(2)[/tex]
Let us now combine the equations together,
[tex]\begin{gathered} x+y=\text{ \$60}\ldots\ldots\ldots\ldots1 \\ 25x+40y=\text{ \$2025}\ldots\ldots\ldots.2 \end{gathered}[/tex]
Let us make x the subject of the formula in equation (1),
[tex]x=\text{ \$60-y}\ldots\ldots..(3)[/tex]
Now let us substitute the 'x' into equation (2), and solve for y.
[tex]25(\text{ \$60-y)+40y=\$2025}[/tex][tex]\text{ \$1500-25y+40y=\$2025}[/tex][tex]\begin{gathered} \text{ \$1500+15y=\$2025} \\ \text{collect like terms,} \\ 15y=\text{ \$2025-\$1500} \end{gathered}[/tex][tex]\begin{gathered} 15y=525 \\ y=\frac{525}{15} \\ y=\text{ \$35} \end{gathered}[/tex]
Let us now substitute the value of y into equation 3 to solve for x,
[tex]\begin{gathered} x=\text{ \$60-y} \\ x=\text{ \$60- \$35} \\ x=\text{ \$25} \end{gathered}[/tex]
Hence, Advance ticket is $25,
Same-day ticket is $35.