Answer:
11573.3 cubic feet
Explanations:
The given tent is made up of a rectangular pyramid and prism. The formula for calculating the volume of the tent is expressed as:
[tex]V=volume\text{ of pyramid + volume of prism}[/tex]
Find the volume of the prism
[tex]\begin{gathered} Vol.\text{ of prism}=Base\text{ area }\times Height \\ Vol.\text{ of prism}=(35\times32)\times9 \\ Vol.\text{ of prism}=1120\times9 \\ Vol.\text{ of prism}=10,080ft^3 \end{gathered}[/tex]
Find the volume of the topped pyramid
[tex]\begin{gathered} Vol.\text{ of pyramid}=\frac{BH}{3} \\ Vol.\text{ of pyramid}=\frac{(35\times32)\times4}{3} \\ Vol.\text{ of pyramid}=\frac{4480}{3} \\ Vol.\text{ of pyramid}=1493.3ft^3 \end{gathered}[/tex]
Determine the area of the tent
[tex]\begin{gathered} volume\text{ of tent}=10,080+1493.3 \\ volume\text{ of tent}=11573.3ft^3 \end{gathered}[/tex]
Therefore the total volume of the tent to the nearest tenth is 11573.3 cubic feet