Respuesta :

Answer:

-ln 3

Explanation:

The instantaneous rate of change of f(x) at x = π is the derivative of this function at x = π.

We know that

[tex]f(x)=3^{sinx}[/tex]

Then, the derivative is

[tex]\begin{gathered} f^{\prime}(x)=3^{sinx}(\ln3)(\sin x)^{\prime} \\ f^{\prime}(x)=3^{sinx}(\ln3)\cos x \end{gathered}[/tex]

Now, we can replace x = π to get:

[tex]\begin{gathered} f^{\prime}(\pi)=3^{\sin\pi}(\ln3)(\cos\pi) \\ f^{\prime}(\pi)=3^0(\ln3)(-1) \\ f^{\prime}(\pi)=(1)(\ln3)(-1) \\ f^{\prime}(\pi)=-\ln3 \end{gathered}[/tex]

Therefore, the instantaneous rate of change is -ln 3