Respuesta :

SOLUTIONS

The parallel line will be of form

[tex]m_1=m_2[/tex]

the equation of the line that passes through the point (1/7,1) and is parallel to the line −4y−3x=−3

[tex]\begin{gathered} -4y-3x=-3 \\ -4y=3x-3 \\ y=\frac{3x}{-4}-\frac{3}{-4} \\ y=-\frac{3}{4}x+\frac{3}{4} \\ y=mx+c \\ m_1=-\frac{3}{4} \end{gathered}[/tex]

The equation of the line parallel to point(1/7 , 1)

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ x_1=\frac{1}{7},y_1=1 \\ y-1=-\frac{3}{4}(x-\frac{1}{7}) \\ y-1=-\frac{3}{4}x+\frac{3}{28} \\ y=-\frac{3}{4}x+\frac{3}{28}+1 \\ multiply\text{ through by 28} \\ 28y=-21x+3+28 \\ 28y=-21x+31 \end{gathered}[/tex]