Respuesta :

Given the equation:

[tex]\log _6x+\log _63=\log _6(x+1)[/tex]

Let's solve for x.

To find the solution, take the following steps:

Step 1:

Apply the product property of logarithm to the left side of the equation:

[tex]\begin{gathered} \log _6(x\ast3)=\log _6(x+1) \\ \\ \log _6(3x)=\log _6(x+1) \end{gathered}[/tex]

Step 2:

Eliminate the log on both sides

[tex]\begin{gathered} 3x=(x+1) \\ \\ 3x=x+1 \end{gathered}[/tex]

Step 3:

Subtract x from both sides

[tex]\begin{gathered} 3x-x=x-x+1 \\ \\ 2x=1 \end{gathered}[/tex]

Step 4:

Divide both sides by 2

[tex]\begin{gathered} \frac{2x}{2}=\frac{1}{2} \\ \\ x=\frac{1}{2} \end{gathered}[/tex]

Therefore, the solution to the given equation is:

[tex]x=\frac{1}{2}[/tex]

ANSWER:

[tex]\text{ B. x = }\frac{1}{2}[/tex]