Identify the translation of the vertices P (-4, -5), L (1, -7), and K (-9, 8), along the vector , <-6 , 3 >.

Given:
The vertices are P (-4, -5), L (1, -7), and K (-9, 8).
The vector is < -6,3 >.
Aim:
We need to find the image of the vertices when translating given vertices along the vector.
Explanation:
The translation vector <-6,3> means each point is being moved 6 units to the left and 3 units up.
For each vertex, we subtract 6 from each x value and add 3 to each y value.
[tex]P^{\prime}(-4-6,-5+3)=P^{\prime}(-10,-2)[/tex][tex]L^{\prime}(1-6,-7+3)=L^{\prime}(-5,-4)[/tex][tex]K^{\prime}(-9-6,8+3)=K^{\prime}(-15,11)[/tex]Final answer:
[tex]P^{\prime}(-10,-2)[/tex][tex]L^{\prime}(-5,-4)[/tex][tex]K^{\prime}(-15,11)[/tex]