In order to find (3h-g)(1), first let's find the function (3h-g)(x), that is, 3*h(x) - g(x):
[tex]\begin{gathered} (3h-g)(x)=3h(x)-g(x) \\ =3(x^2+1)-(3x+2) \\ =3x^2+3-3x-2 \\ =3x^2-3x+1 \end{gathered}[/tex]Now, let's evaluate it for x = 1:
[tex]\begin{gathered} (3h-g)(1)=3\cdot(1)^2-3(1)+1 \\ =3\cdot1-3+1 \\ =3-3+1 \\ =1 \end{gathered}[/tex]So the value of (3h-g)(1) is 1.