The following figure shows AABC with side lengths to the nearest tenth.B1528C8АFind mZA.Note that mZA is acute. Round to the nearest degree.

Respuesta :

Given the triangle, we can find the required angle using the sine rule of triangles. This can be seen below.

Explanation

The sine rule is given as

[tex]\frac{Sin\text{ A}}{a}=\frac{\text{SinB}}{b}[/tex]

We can then substitute the given parameters inside the formula.

[tex]\begin{gathered} \frac{\text{SinA}}{15}=\frac{Sin28}{8} \\ \text{SinA}=\frac{15\times Sin28}{8} \\ \text{SinA}=0.8803 \\ A=Sin^{-1}(0.8803) \\ A\approx62^0 \end{gathered}[/tex]

Answer:

[tex]A\approx62^0[/tex]