Respuesta :

SOLUTION

The given function is

[tex]f(x)=7x-3x^2[/tex]

Using the limit definition

[tex]f^{\prime}(x)=\lim _{h\to0}\frac{f(x+h)-f(x)}{h}[/tex]

Substitute x+h for x

This gives

[tex]f^{\prime}(x)=\lim _{h\to0}\frac{7(x+h)+3(x+h)^2-(7x-3x^2)}{h}[/tex]

Simplify the limit

[tex]\begin{gathered} f^{\prime}(x)=\lim _{h\to0}\frac{7x+7h-3(x^2+2hx+h^2)^{}-7x+3x^2}{h} \\ \end{gathered}[/tex]

This further gives

[tex]f^{\prime}(x)=\lim _{h\to0}\frac{7x+7h-3x^2-6hx-3h^2-7x+3x^2}{h}[/tex]

Simplify further

[tex]f^{\prime}(x)=\lim _{h\to0}\frac{7h-6hx-3h^2}{h}[/tex]

Simplify the fraction

[tex]\begin{gathered} f^{\prime}(x)=\lim _{h\to0}(\frac{7h}{h}-\frac{6hx}{h}-\frac{3h^2}{h}) \\ f^{\prime}(x)=\lim _{h\to0}(7-6x-3h) \end{gathered}[/tex]

Find the limit

[tex]\begin{gathered} f^{\prime}(x)=(7-6x-3(0)) \\ f^{\prime}(x)=7-6x \end{gathered}[/tex]

Therefore, the solution is

[tex]f^{\prime}(x)=7-6x[/tex]