A person invests 3000 dollars in a bank. The bank pays 4.25% interest compounded semi-annually. To the nearest tenth of a year, how long must the person leave the money in the bank until it reaches 5600 dollars? A = P(1 + -)nt n

Respuesta :

1. Define data

P = 3000 dollars

r = 4.25%

A = 5600 dollars

n = 2

2. Equation

[tex]A=P(1+\frac{r}{n})^{nt}[/tex][tex]5600=3000(1+0.0425/2)^{2t}[/tex][tex]\begin{gathered} \frac{5600}{3000}=(1.02125)^{2t} \\ 1.86=(1.02125)^{2t} \end{gathered}[/tex]

Solving for t

[tex]t=14.8\text{ years}[/tex]