Match each of the following expressions to an equivalent expression shown in the bins below.Consider each of the expressions in blue to be as you would type them into a typical calculator.


Given:
[tex]xy\/z,(x\/y)z,xy\/z,x\/(yz),x\/y\/z.[/tex]Required:
We need to find
[tex]\frac{xy}{z},\frac{x}{yz},\frac{xz}{y}[/tex]Explanation:
We know that
[tex]\frac{xy}{z}=xy\/z[/tex][tex]\frac{x}{yz}=x\/(yz)[/tex][tex]\frac{xz}{y}=xz\/y[/tex][tex]We\text{ know that \lparen x/y\rparen z=xz/y}[/tex][tex]\frac{xz}{y}\(=(x/y)\)z[/tex][tex]We\text{ know that x/y/z=}\frac{x}{\frac{y}{z}}=(\frac{x}{y})\/z=\frac{x\/y}{z}=\frac{x}{y}\times\frac{1}{z}=\frac{x}{yz}[/tex][tex]\frac{x}{yz}\(=x/y\/\)z[/tex]By the typical calculator rule, first, we need to do division before multiplication.
[tex]x\/yz=\frac{x}{y}z=\frac{xz}{y}[/tex]Final answer:
[tex]\frac{xy}{z}=xy\/z[/tex][tex]\frac{x}{yz}=x\/(yz)\text{and }x\/y\/z\text{ }[/tex][tex]\frac{xz}{y}\(=(x/y)\)z\text{ and }x\/yz[/tex]