Match each of the following expressions to an equivalent expression shown in the bins below.Consider each of the expressions in blue to be as you would type them into a typical calculator.

Match each of the following expressions to an equivalent expression shown in the bins belowConsider each of the expressions in blue to be as you would type them class=
Match each of the following expressions to an equivalent expression shown in the bins belowConsider each of the expressions in blue to be as you would type them class=

Respuesta :

Given:

[tex]xy\/z,(x\/y)z,xy\/z,x\/(yz),x\/y\/z.[/tex]

Required:

We need to find

[tex]\frac{xy}{z},\frac{x}{yz},\frac{xz}{y}[/tex]

Explanation:

We know that

[tex]\frac{xy}{z}=xy\/z[/tex][tex]\frac{x}{yz}=x\/(yz)[/tex][tex]\frac{xz}{y}=xz\/y[/tex][tex]We\text{ know that \lparen x/y\rparen z=xz/y}[/tex][tex]\frac{xz}{y}\(=(x/y)\)z[/tex][tex]We\text{ know that x/y/z=}\frac{x}{\frac{y}{z}}=(\frac{x}{y})\/z=\frac{x\/y}{z}=\frac{x}{y}\times\frac{1}{z}=\frac{x}{yz}[/tex][tex]\frac{x}{yz}\(=x/y\/\)z[/tex]

By the typical calculator rule, first, we need to do division before multiplication.

[tex]x\/yz=\frac{x}{y}z=\frac{xz}{y}[/tex]

Final answer:

[tex]\frac{xy}{z}=xy\/z[/tex]

[tex]\frac{x}{yz}=x\/(yz)\text{and }x\/y\/z\text{ }[/tex]

[tex]\frac{xz}{y}\(=(x/y)\)z\text{ and }x\/yz[/tex]