Respuesta :

The given equation is:

[tex]\frac{v}{3}+8=15[/tex]

To determine whether each of the given values of v is a solution to the equation, we would substitute each of those values for v, to check if the value is true for the equation or not.

On substituting and evaluating, the result on the Left hand side must be equal to what's on the right hand side, which is 15.

Thus, we have:

[tex]\begin{gathered} For\text{ v=30} \\ \frac{v}{3}+8=15 \\ \text{solving the L.H.S} \\ \frac{30}{3}+8 \\ 10+8=18 \\ \text{Thus, v=30 is Not a solution to the equation because it does not produce 15} \end{gathered}[/tex][tex]\begin{gathered} For\text{ v=-18} \\ \frac{v}{3}+8=15 \\ \text{solving the L.H.S} \\ -\frac{18}{3}+8 \\ -6+8=2 \\ \text{Thus,v}=-18\text{ is Not a solution to the equation because it does not produce 15} \end{gathered}[/tex][tex]\begin{gathered} For\text{ v=21} \\ \frac{v}{3}+8=15 \\ \text{solving the L.H.S} \\ \frac{21}{3}+8 \\ 7+8=15 \\ \text{Thus,v}=21\text{ is a solution to the equation because it produces 15} \end{gathered}[/tex][tex]\begin{gathered} \text{For v=}0 \\ \frac{v}{3}+8=15 \\ \text{solving the L.H.S} \\ \frac{0}{3}+8 \\ 0+8=8 \\ \text{Thus, v=0 is Not a solution to the equation because it does not produce 15} \end{gathered}[/tex]

Hence, the table will take the form, as shown below:

Ver imagen MikingD546081