A stone of mass 100g is projected upwards with an initial velocity of u. The stone reaches a maximum height of s. What initial velocity would the stone have to be projected with to reach a maximum height of 2s.2uu square root 24u8u

Respuesta :

Answer:

u√2

Explanation:

The mass, m = 100 g

m = 100/1000 g

m = 0.1 kg

Using the equation of motion below for upward motion

[tex]\begin{gathered} v_f^2=v_i^2-2gH \\ \\ where: \\ v_f=final\text{ velocity} \\ \\ v_i=initial\text{ velocity} \\ \\ H=height \end{gathered}[/tex]

At maximum height, vf = 0 m/s

[tex]\begin{gathered} 0=v_i^2-2gH \\ \\ v_i^2=2gH \\ \\ v_i=\sqrt{2gH} \end{gathered}[/tex]

When maximum height, H = s, initial velocity = u

[tex]v_i=\sqrt{2gs}\text{ = u}[/tex]

When maximum height, H = 2s

[tex]\begin{gathered} v_i=\sqrt{2g(2s)} \\ \\ v_i=\sqrt{4gs} \\ \\ v_i=\sqrt{2}\times\sqrt{2gs} \\ \\ v_i=\sqrt{2}u \\ \\ v_i=u\sqrt{2} \end{gathered}[/tex]

The initial velcoity that the stone has to be projected with to reach a maximum height of 2s = u√2