we have the functions
[tex]\begin{gathered} f\left(x\right)=3x^{3}-x^{2}-10x \\ g\left(x\right)=x^{2}+2x \end{gathered}[/tex]using a graphing tool
The area between the two graphs in the first quadrant is given by
[tex]\begin{gathered} A=\int_0^{2.361}\left(x^2+2x\right)dx-\int_2^{2.361}\left(3x^3-x^2-10x\right)dx=9.96-1.71 \\ \\ A=8.25\text{ units}^2 \end{gathered}[/tex]