Respuesta :

Answer:

110.24

Explanation:

First, let us decompose the vectors into their components.

For the vector on the right, decomposing into components gives:

x - component: 80 cos (30°)

y - component: 80 sin (30°)

Therefore.

[tex]v_{right}=[80\cos(30^o),80\sin(30^o)][/tex]

Now for the vector on the left, we have

x - component: 91 cos (130°)

y - componentL 91 sin (130°)

Therefore,

[tex]v_{left}=[91\cos(130^o),91\sin(130^o)][/tex]

Now adding these two vectors gives

[tex]v_{r\imaginaryI ght}+v_{left}=[80\cos(30^o),80\sin(30^o)]+[91\cos(130^o),91\sin(130^o)][/tex]

Adding the components gives

[tex]v_{r\imaginaryI ght}+v_{left}=[80\cos(30^o)+91\cos(130^o),80\sin(30^o)+91\sin(130^o)][/tex]

Now since cos (30) = √3/ 2, sin 30 = 1/2, cos (130) = -.0643, and sin (130) = 0.766; the above becomes

[tex]v_{r\mathrm{i}ght}+v_{left}=[\frac{80\sqrt{3}}{2}+91(-0.643),80*(1/2)+91*(0.766)][/tex]

the above simplifies to give ( using a calculator)

[tex]v_{r\mathrm{i}ght}+v_{left}=[10.79,109.71][/tex]

Now the final step is to find the magnitude of the above vector.

[tex]|v_{r\mathrm{i}ght}+v_{left}|=\sqrt{(10.79)^2+(109.71)^2}[/tex][tex]\boxed{|v_{r\mathrm{i}ght}+v_{left}|=110.24.}[/tex]

which is our answer!