The transformation we need is:
Translate triangle A 1 unit up and 1 unit to the left, rotate it 90° clockwise about the origin, and reflect it over the y-axis. Therefore the answer is C.
This comes from the following facts.
A translation 1 unit up and 1 unit to the left is given by:
[tex](x,y)\rightarrow(x-1,y+1)[/tex]
Then the original vertexes take the form:
[tex]\begin{gathered} (-3,-1)\rightarrow(-4,0) \\ (-3,-5)\rightarrow(-4,-4) \\ (-1,-5)\rightarrow(-2,-4) \end{gathered}[/tex]
Now, we make a rotation of 90° clockwise, this is given by:
[tex](x,y)\rightarrow(y,-x)[/tex]
Then we have:
[tex]\begin{gathered} (-3,-1)\rightarrow(-4,0)\rightarrow(0,4) \\ (-3,-5)\rightarrow(-4,-4)\rightarrow(-4,4) \\ (-1,-5)\rightarrow(-2,-4)\rightarrow(-4,2) \end{gathered}[/tex]
Finally we make a reflection over the y-axis, this is given by:
[tex](x,y)\rightarrow(-x,y)[/tex]
Then we have:
[tex]\begin{gathered} (-3,-1)\rightarrow(-4,0)\rightarrow(0,4)\rightarrow(0,4) \\ (-3,-5)\rightarrow(-4,-4)\rightarrow(-4,4)\rightarrow(4,4) \\ (-1,-5)\rightarrow(-2,-4)\rightarrow(-4,2)\rightarrow(4,2) \end{gathered}[/tex]
Therefore the whole transformation is:
[tex]\begin{gathered} (-3,-1)\rightarrow(0,4) \\ (-3,-5)\rightarrow(4,4) \\ (-1,-5)\rightarrow(4,2) \end{gathered}[/tex]
And we notice that this transformation takes triangle A onto triangle B.