Respuesta :

Answer:

Option B

Explanation:

Given that:

[tex]\begin{gathered} y=x^2+3x-5 \\ y=x+3 \end{gathered}[/tex]

Since the right hand side of both equations are same, equate the left hand side of both the equations.

[tex]\begin{gathered} x^2+3x-5=x+3 \\ x^2+2x-8=0 \\ (x+4)(x-2)=0 \\ x=-4,2 \end{gathered}[/tex]

The values of x are -4 and 2.

Substitute the values of x into the equation y = x+3.

When x = -4,

[tex]\begin{gathered} y=-4+3 \\ =-1 \end{gathered}[/tex]

When x = 2,

[tex]\begin{gathered} y=2+3 \\ =5 \end{gathered}[/tex]

y takes the values -1 and 5. Since -1 is less than 5, the smallest value of y is -1.

So, option B is correct.