Respuesta :

Given:

[tex]f(x)=2sinx.cosx[/tex]

To find: Determine f'(0)=?

Explanation:

We have given that

[tex]f(x)=2sinx.cosx.......(1)[/tex]

We know the identity of the trigonometric

[tex]sin2x=2sinx.cosx[/tex]

Eq.1 becomes

[tex]f(x)=sin2x[/tex]

Now, differentiate f(x) w.r.to x

Therefore,

[tex]\begin{gathered} f^{\prime}(x)=\frac{d}{dx}[sin(2x)] \\ \\ f^{\prime}(x)=cos2x\times\frac{d}{dx}(2x) \\ \\ f^{\prime}(x)=cos2x\times(2) \\ \\ f^{\prime}(x)=2cos2x \end{gathered}[/tex]

Hence,

[tex]f^{\prime}(x)=2cos2x[/tex][tex]f^{\prime}(x)=2cos2x[/tex]

For the value of f'(0) put x = 0 in f'(x)

We get,

[tex]\begin{gathered} f^{\prime}(0)=2cos2(0) \\ \\ f^{\prime}(0)=2\times cos0 \end{gathered}[/tex]

We know that

[tex]cos0=1[/tex]

So,

[tex]\begin{gathered} f^{\prime}(0)=2\times1 \\ \\ f^{\prime}(0)=2 \end{gathered}[/tex]

Answer: f'(0) = 2 for f(x) = 2 sin x cos x.