Respuesta :

Answer:

135751 unique four card combinations can be created

Explanations:

Total number of cards in a deck = 52

Number of queens in a deck = 4

Number of jacks in a deck = 4

If all the queens and jacks are removed, number of remaining cards = 52 - 8

Number of remaining cards = 44

Number of unique four card combinations that can be created = 44C4

[tex]nC_r=\text{ }\frac{n!}{(n-r)!r!}[/tex]

Therefore:

[tex]\begin{gathered} 44C_4=\text{ }\frac{44!}{(44-4)!4!} \\ 44C_4=\text{ }\frac{44!}{40!4!} \\ 44C_4=\text{ }\frac{44\times43\times42\times41\times40!}{40!\times4\times3\times2\times1} \\ 44C_4=\text{ }\frac{3258024}{24} \\ 44C_4=\text{ }135751 \end{gathered}[/tex]

135751 unique four card combinations can be created