y = -x2 - 4x - 1 Step 2: Find the vertex. Identify whether it's a minimum or maximum value x = b/ 2a-2. 3) minimum value (-2. 3) maximum value (-4. 3) minimum value (-4. 3) maximum value

Respuesta :

The vertex for a quadratic equation of the form

[tex]y=ax^2+bx+c[/tex]

is given by

[tex]x=-\frac{b}{2a}[/tex]

In our case, b = -4 and a = -1; therefore,

[tex]x=-\frac{-4}{2(-1)}=-2[/tex][tex]x=-2[/tex]

this is the x-coordinate of the vertex, the y-coordinate is

[tex]\begin{gathered} y=-(-2)^2-4(-2)-1 \\ y=3 \end{gathered}[/tex]

Hence, the coordinates of the vertex are

[tex](-2,3)[/tex]

And since we have a negative sign on x^2, the parabola is concave down; therefore, the vertex is the maximum value.

The correct choice, therefore, is (-2, 3) maximum value