Respuesta :

SOLUTION

From the question given,

The radius r is

[tex]r=\frac{diameter}{2}=\frac{8}{2}=4[/tex]

Hence the radius of the cone is 4 in.

The height of the cone is the perpendicular height you see which is 10 in.

Hence the height of the cone is 10 in.

Volume of a cone V is given by the formula

[tex]\begin{gathered} V=\frac{1}{3}\pi\text{r}^2h \\ where\text{ r = radius = 4 in.} \\ h=\text{ height = 10 in } \\ \pi=3.14 \end{gathered}[/tex]

Solving we have

[tex]\begin{gathered} V=\frac{1}{3}\times3.14\times4^2\times10 \\ V=\frac{1}{3}\times3.14\times16\times10 \\ V=167.4666 \\ V=167.5\text{ in}^3\text{ to the nearest tenth } \end{gathered}[/tex]

Hence Volume of the cone is

[tex]V=167.5\text{ in}^3\text{ }[/tex]

So write it as 167.5 in 3