Respuesta :

Answer:

[tex]2(7x+[/tex][tex]2)^{2}[/tex]

Step-by-step explanation:

5x+9x= 14x

14x+4= 2(7x+2)²

2(7x+2)²= 196x+16

Answer:

[tex]5\left(x+\dfrac{9}{10}\right)^2-\dfrac{1}{20}[/tex]

Step-by-step explanation:

Given:

[tex]5x^2+9x+4[/tex]

Factor out the coefficient of the leading term from the first two terms:

[tex]\implies 5\left(x^2+\dfrac{9}{5}x\right)+4[/tex]

Add the square of half the coefficient of the x term inside the parentheses and subtract its distributed value from the expression:

[tex]\implies 5\left(x^2+\dfrac{9}{5}x+\left(\dfrac{\frac{9}{5}}2\right)^2\right)+4-5\left(\dfrac{\frac{9}{5}}2\right)^2[/tex]

Simplify:

[tex]\implies 5\left(x^2+\dfrac{9}{5}x+\left(\dfrac{9}{10}\right)^2\right)+4-5\left(\dfrac{9}{10}\right)^2[/tex]

[tex]\implies 5\left(x^2+\dfrac{9}{5}x+\dfrac{81}{100}\right)+4-5\left(\dfrac{81}{100}\right)[/tex]

[tex]\implies 5\left(x^2+\dfrac{9}{5}x+\dfrac{81}{100}\right)+4-\dfrac{405}{100}[/tex]

[tex]\implies 5\left(x^2+\dfrac{9}{5}x+\dfrac{81}{100}\right)-\dfrac{1}{20}[/tex]

Factor the perfect trinomial contained within the parentheses:

[tex]\implies 5\left(x+\dfrac{9}{10}\right)^2-\dfrac{1}{20}[/tex]

Therefore, the given expression written in vertex form is:

[tex]5\left(x+\dfrac{9}{10}\right)^2-\dfrac{1}{20}[/tex]