Respuesta :

The coordinates of b are (6, -7)

We know that the midpoint formula,

The midpoint of line passing through points (m, n) and (p, q) is,

[tex](\frac{m+p}{2} ,\frac{n+q}{2} )[/tex]

For given question,

The midpoint of ab is m(7,-2).

We have been given the coordinates of a = (8,3)

We need to find the coordinates of b.

Let a = (x, y)

         = (8, 3)

and the coordinates of b = (p, q)

Using midpoint formula,

m = [tex](\frac{x+p}{2} ,\frac{y+q}{2} )[/tex]

(7, -2) = [tex](\frac{8+p}{2} ,\frac{3+q}{2} )[/tex]

Comparing X-coordinates we have,

⇒ [tex]\frac{8+p}{2}=7[/tex]

⇒ 8 + p = 14

⇒ p = 6

Similarly, by comparing Y-coordinates we have,

⇒ [tex]\frac{3+q}{2} =-2[/tex]

⇒ 3 + q = -4

⇒ q = -7

This means, (p, q) = (6, -7)

Therefore, the coordinates of b are (6, -7)

Learn more about the midpoint formula here:

https://brainly.com/question/14687140

#SPJ4