Respuesta :

Answer:

-9, 3 and 6

Step-by-step explanation:

Given cubic polynomial equation:

[tex]x^3-63x+162=0[/tex]

  • Let α = first zero
  • Let β = second zero
  • Let 2β = third zero (since one zero is double another zero).

[tex]\textsf{The sum of the zeros of a cubic polynomial }ax^3+bx^2+cx+d \textsf{ is }-\dfrac{b}{a}.[/tex]

[tex]\implies \alpha + \beta + 2 \beta = -\dfrac{0}{1}[/tex]

[tex]\implies \alpha + 3 \beta = 0[/tex]

[tex]\implies \beta=- \dfrac{\alpha}{3}[/tex]

[tex]\textsf{The product of the zeros of a cubic polynomial }ax^3+bx^2+cx+d \textsf{ is }-\dfrac{d}{a}.[/tex]

[tex]\implies \alpha \cdot \beta \cdot 2\beta=-\dfrac{162}{1}[/tex]

[tex]\implies 2\alpha\beta^2=-162[/tex]

Substitute the found expression for β into the product equation:

[tex]\implies 2\alpha\beta^2=-162[/tex]

[tex]\implies 2\alpha\left(- \dfrac{\alpha}{3}\right)^2=-162[/tex]

[tex]\implies 2\alpha\left(\dfrac{\alpha^2}{9}\right)=-162[/tex]

[tex]\implies \dfrac{\alpha^3}{9}\right)=-81[/tex]

[tex]\implies \alpha^3=-729[/tex]

[tex]\implies \alpha=\sqrt[3]{-729}[/tex]

[tex]\implies \alpha=-9[/tex]

Substitute the found value of α into the expression for β :

[tex]\implies \beta=- \dfrac{-9}{3}=3[/tex]

Therefore, the zeros are:

[tex]\implies \alpha=-9[/tex]

[tex]\implies \beta=3[/tex]

[tex]\implies 2\beta=6[/tex]

Ver imagen semsee45