Respuesta :

Answer:

14 ft

Step-by-step explanation:

Given:

  • Bedroom is 4 ft longer than it is wide.
  • Area is 252 ft².

Let x = width of the bedroom:

  • width = x ft
  • length = (x + 4) ft

Therefore:

[tex]\begin{aligned}\textsf{Area of a rectangle} & = \sf width \times length\\\implies 252 & = x(x+4)\\252 & = x^2+4x\\x^2+4x & = 252\end{aligned}[/tex]

To find the value(s) of x, complete the square.

Add the square of half the coefficient of the term in x to both sides:

[tex]\implies x^2+4x+\left(\dfrac{4}{2}\right)^2=252+\left(\dfrac{4}{2}\right)^2[/tex]

[tex]\implies x^2+4x+4=256[/tex]

Factor the perfect trinomial on the left side:

[tex]\implies (x+2)^2=256[/tex]

Square root both sides:

[tex]\implies x+2= \pm \sqrt{256}[/tex]

[tex]\implies x+2= \pm 16[/tex]

Therefore:

[tex]\implies x=-2+16=14[/tex]

[tex]\implies x=-2-16=-18[/tex]

As width cannot be negative, the width of the room is 14 ft.