Respuesta :
Answer:
- x < - 3 or x ∈ (-∞, -3)
==============================
Given
Inequality:
- [tex]-4(\cfrac{5}{2} +\cfrac{3}{2}x) > 8[/tex]
Solution
Steps
1. Distribute:
- [tex]-4(\cfrac{5}{2}) -4(\cfrac{3}{2}x) > 8[/tex]
2. Multiply:
- [tex]-10-6x > 8[/tex]
3. Collect like terms:
- [tex]-10-8 > 6x[/tex]
4. Addition:
- [tex]-18 > 6x[/tex]
5. Divide both sides by 6:
- [tex]-3 > x[/tex] or [tex]x < -3[/tex]
Interval notation for this solution is:
- x ∈ (-∞, -3)
Answer:
[tex]x < -3[/tex]
Interval notation: (-∞, 3)
Step-by-step explanation:
Given inequality:
[tex]-4 \left(\dfrac{5}{2}+\dfrac{3}{2}x\right) > 8[/tex]
Divide both sides by -4 (remembering to change the direction of the inequality sign, since we are dividing by a negative):
[tex]\implies \dfrac{ -4 \left(\dfrac{5}{2}+\dfrac{3}{2}x\right)}{-4} > \dfrac{8}{-4}[/tex]
[tex]\implies \dfrac{5}{2}+\dfrac{3}{2}x < -2[/tex]
Subtract ⁵/₂ from both sides:
[tex]\implies \dfrac{5}{2}+\dfrac{3}{2}x-\dfrac{5}{2} < -2-\dfrac{5}{2}[/tex]
[tex]\implies \dfrac{3}{2}x < -\dfrac{9}{2}[/tex]
Multiply both sides by 2:
[tex]\implies \dfrac{2 \cdot 3}{2}x < -\dfrac{2 \cdot 9}{2}[/tex]
[tex]\implies \dfrac{\diagup\!\!\!\!2 \cdot 3}{\diagup\!\!\!\!2}x < -\dfrac{\diagup\!\!\!\!2 \cdot 9}{\diagup\!\!\!\!2}[/tex]
[tex]\implies 3x < -9[/tex]
Divide both sides by 3:
[tex]\implies \dfrac{3x}{3} < \dfrac{-9}{3}[/tex]
[tex]\implies x < -3[/tex]
Learn more about inequalities here:
https://brainly.com/question/27931945
https://brainly.com/question/27747320