Respuesta :

Answer:

  • x < - 3 or x ∈ (-∞, -3)

==============================

Given

Inequality:

  • [tex]-4(\cfrac{5}{2} +\cfrac{3}{2}x) > 8[/tex]

Solution

Steps

1. Distribute:

  • [tex]-4(\cfrac{5}{2}) -4(\cfrac{3}{2}x) > 8[/tex]

2. Multiply:

  • [tex]-10-6x > 8[/tex]

3. Collect like terms:

  • [tex]-10-8 > 6x[/tex]

4. Addition:

  • [tex]-18 > 6x[/tex]

5. Divide both sides by 6:

  • [tex]-3 > x[/tex] or [tex]x < -3[/tex]

Interval notation for this solution is:

  • x ∈ (-∞, -3)

Answer:

[tex]x < -3[/tex]

Interval notation:  (-∞, 3)

Step-by-step explanation:

Given inequality:

[tex]-4 \left(\dfrac{5}{2}+\dfrac{3}{2}x\right) > 8[/tex]

Divide both sides by -4 (remembering to change the direction of the inequality sign, since we are dividing by a negative):

[tex]\implies \dfrac{ -4 \left(\dfrac{5}{2}+\dfrac{3}{2}x\right)}{-4} > \dfrac{8}{-4}[/tex]

[tex]\implies \dfrac{5}{2}+\dfrac{3}{2}x < -2[/tex]

Subtract ⁵/₂ from both sides:

[tex]\implies \dfrac{5}{2}+\dfrac{3}{2}x-\dfrac{5}{2} < -2-\dfrac{5}{2}[/tex]

[tex]\implies \dfrac{3}{2}x < -\dfrac{9}{2}[/tex]

Multiply both sides by 2:

[tex]\implies \dfrac{2 \cdot 3}{2}x < -\dfrac{2 \cdot 9}{2}[/tex]

[tex]\implies \dfrac{\diagup\!\!\!\!2 \cdot 3}{\diagup\!\!\!\!2}x < -\dfrac{\diagup\!\!\!\!2 \cdot 9}{\diagup\!\!\!\!2}[/tex]

[tex]\implies 3x < -9[/tex]

Divide both sides by 3:

[tex]\implies \dfrac{3x}{3} < \dfrac{-9}{3}[/tex]

[tex]\implies x < -3[/tex]

Learn more about inequalities here:

https://brainly.com/question/27931945

https://brainly.com/question/27747320