Respuesta :
Answer:
a) $20,771.76
b) $20,817.67
c) $20,484.80
d) $20,864.52
Step-by-step explanation:
Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+\frac{r}{n}\right)^{nt} $}[/tex]
where:
- A = final amount
- P = principal amount
- r = interest rate (in decimal form)
- n = number of times interest applied per time period
- t = number of time periods elapsed
Part (a): semiannually
Given:
- P = $15,000
- r = 5.5% = 0.055
- n = 2
- t = 6 years
Substitute the given values into the formula and solve for A:
[tex]\implies \sf A=15000\left(1+\frac{0.055}{2}\right)^{2 \times 6}[/tex]
[tex]\implies \sf A=15000\left(1.0275}{2}\right)^{12}[/tex]
[tex]\implies \sf A=20771.76[/tex]
Part (b): quarterly
Given:
- P = $15,000
- r = 5.5% = 0.055
- n = 4
- t = 6 years
Substitute the given values into the formula and solve for A:
[tex]\implies \sf A=15000\left(1+\frac{0.055}{4}\right)^{4 \times 6}[/tex]
[tex]\implies \sf A=15000\left(1.01375}\right)^{24}[/tex]
[tex]\implies \sf A=20817.67[/tex]
Part (c): monthly
Given:
- P = $15,000
- r = 5.5% = 0.055
- n = 12
- t = 6 years
Substitute the given values into the formula and solve for A:
[tex]\implies \sf A=15000\left(1+\frac{0.055}{12}\right)^{12 \times 6}[/tex]
[tex]\implies \sf A=15000\left(1+\frac{0.055}{12}\right)^{72}[/tex]
[tex]\implies \sf A=20484.80[/tex]
Continuous Compounding Formula
[tex]\large \text{$ \sf A=Pe^{rt} $}[/tex]
where:
- A = Final amount
- P = Principal amount
- e = Euler's number (constant)
- r = annual interest rate (in decimal form)
- t = time (in years)
Part (d): continuous
Given:
- P = $15,000
- r = 5.5% = 0.055
- t = 6 years
Substitute the given values into the formula and solve for A:
[tex]\implies \sf A=15000e^{0.055 \times 6}[/tex]
[tex]\implies \sf A=20864.52[/tex]
Learn more about compound interest here:
https://brainly.com/question/27747709
https://brainly.com/question/28004698