The following classification of quadratic equations is presented below:
- x = - 2 and x = 3: h(x) = (x + 2) · (x - 3), k(x) = - 3 · (x + 2) · (x - 3).
- x = 2 and x = - 3: g(x) = 8 · (x + 3) · (x - 2), m(x) = (x + 3) · (x - 2).
- Neither: j(x) = (x - 2) · (x - 3)
How to classify quadratic equations in terms of its roots
In this problem we have quadratic equations in factored form, whose form is presented below:
y = a · (x - r₁) · (x - r₂) (1)
Where r₁ and r₂ are the roots of the equation and a is the leading coefficient. A value of x is a root if and only if y is zero. Besides, we must located all the quadratic equations according to their roots.
x = - 2 and x = 3
h(x) = (x + 2) · (x - 3)
k(x) = - 3 · (x + 2) · (x - 3)
x = 2 and x = - 3
g(x) = 8 · (x + 3) · (x - 2)
m(x) = (x + 3) · (x - 2)
Neither
f(x) = 3 · (x - 1) · (x + 2)
j(x) = (x - 2) · (x - 3)
To learn more on quadratic equations: https://brainly.com/question/17177510
#SPJ1