Use the given Maclaurin series to evaluate the limit


The "given series" should be for [tex]\cos(x)[/tex], not [tex]x[/tex], so that
[tex]\cos(x) = 1 - \dfrac{x^2}2 + \dfrac{x^4}{24} - \dfrac{x^6}{720} + \cdots[/tex]
In the limit (which should say [tex]x\to\infty[/tex], not [tex]n[/tex]), we have
[tex]\displaystyle \lim_{x\to\infty} \frac{\frac{x^2}{1+\cos(x)}}{x^4} = \lim_{x\to\infty} \frac{1}{x^2\left(2 - \frac{x^2}2 + \frac{x^4}{24} - \cdots\right)} = \boxed{0}[/tex]