[tex] \: \: \: \: \: \: \: \: \: \: \: n\\ evaluate \: \: \: \: \: Σ \: (nCi)\\ \: \: \: \: \: \: \: \: \: \: \: \: i = 0[/tex]
Evaluate the summation​

Respuesta :

Assuming you mean

[tex]\displaystyle \sum_{i=0}^n {}_nC_{i}[/tex]

where

[tex]{}_n C_i = \dbinom ni = \dfrac{n!}{i! (n-i)!}[/tex]

we have by the binomial theorem

[tex]\displaystyle (1 + 1)^n = \sum_{i=0}^n {}_nC_{i} \cdot 1^i \cdot 1^{n-i}[/tex]

so that the given sum has a value of [tex]\boxed{2^n}[/tex].