Use the quotient and chain rules. If
[tex]y = \dfrac{\cos(2x)}{\tan(2x)}[/tex]
then the derivative is
[tex]\dfrac{dy}{dx} = \dfrac{\tan(2x) \frac d{dx}\cos(2x) - \cos(2x) \frac d{dx}\tan(2x)}{\tan^2(2x)}[/tex]
[tex]\dfrac{dy}{dx} = \dfrac{\tan(2x) (-\sin(2x)) \frac d{dx}(2x) - \cos(2x)\sec^2(2x) \frac d{dx}(2x)}{\tan^2(2x)}[/tex]
[tex]\dfrac{dy}{dx} = \dfrac{-2\sin(2x)\tan(2x) - 2 \sec(2x) }{\tan^2(2x)}[/tex]
and we can rewrite this by
• multiplying by [tex]\frac{\cos^2(2x)}{\cos^2(2x)}[/tex],
[tex]\dfrac{dy}{dx} = \dfrac{-2\sin^2(2x)\cos(2x) - 2 \cos(2x) }{\sin^2(2x)}[/tex]
• factorizing,
[tex]\dfrac{dy}{dx} = -\dfrac{2\cos(2x) \left(\sin^2(2x) + 1\right)}{\sin^2(2x)}[/tex]
etc