Using the Fundamental Counting Theorem, it is found that the number of outcomes possible in this scenario is given by:
D. 240.
What is the Fundamental Counting Theorem?
It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:
[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]
The number of options for each selection are given as follows:
[tex]n_1 = 6, n_2 = 4, n_3 = 5, n_4 = 2[/tex]
Hence the number of outcomes is given by:
N = 6 x 4 x 5 x 2 = 240.
More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866
#SPJ1