[tex]\{ \frac { ( \sqrt { 3 } ) \times 3 ^ { - 2 } } { ( \sqrt { 5 } ) ^ { 2 } } \} ^ { \frac { 1 } { 2 } }[/tex]solve this equation

Respuesta :

Answer:

Step-by-step explanation:

Exponent law:

    [tex]\sf \bf a^m * a^n = a^{m+n}\\\\ (a^m)^n = a^{m*n}[/tex]

    [tex]\sf a^{-m}=\dfrac{1}{a^m}[/tex]

       First convert radical form to exponent form and then apply exponent law.

 [tex]\sf \sqrt{3}=3^{\frac{1}{2}}\\\\\sqrt{5}=5^{\frac{1}{2}}[/tex]

[tex]\sf \left(\dfrac{(\sqrt{3}*3^{-2}}{(\sqrt{5})^2}\right)^{\frac{1}{2}}= \left(\dfrac{3^{\frac{1}{2}}*3^{-2}}{(5^{\frac{1}{2}})^2} \right )^{\frac{1}{2}}[/tex]

                      [tex]= \left(\dfrac{3^{\frac{1}{2}-2}}{5^{\frac{1}{2}*2}}\right)^{\frac{1}{2}}\\\\=\left(\dfrac{3^{\frac{1-4}{2}}}{5}\right)^{\frac{1}{2}}\\\\=\left(\dfrac{3^{\frac{-3}{2}}}{5}\right)^{\frac{1}{2}}\\\\=\dfrac{3^{\frac{-3}{2}*{\frac{1}{2}}}}{5^{\frac{1}{2}}}\\\\ =\dfrac{3^{{\frac{-3}{4}}}}{5^{\frac{1}{2}}}[/tex]