Find the basis of the null space of A.

Answer:
[tex]\left[\begin{array}{cccc}-1\\1\\1\\0\end{array}\right][/tex], [tex]\left[\begin{array}{cccc}0\\2\\0\\1\end{array}\right][/tex] Are two vectors which are basis of null space of A
Step-by-step explanation:
Basis of a null space is a vector matrix which when multiplied by the reduced echelon form of the matrix gives null matrix or 0 matrix
So, to find the reduced echelon form we apply the row operations :
R₁ = R₁/2
[tex]\left[\begin{array}{cccc}1&-2&3&4\\2&-1&3&2\\4&-5&9&10\\0&-1&1&2\end{array}\right][/tex]
R₂ = R₂ - 2R₁
[tex]\left[\begin{array}{cccc}1&-2&3&4\\0&3&-3&-6\\4&-5&9&10\\0&-1&1&2\end{array}\right][/tex]
R₃ = R₃ - 4R₁
[tex]\left[\begin{array}{cccc}1&-2&3&4\\0&3&-3&-6\\0&3&-3&-6\\0&-1&1&2\end{array}\right][/tex]
R₂ = R₂/3
[tex]\left[\begin{array}{cccc}1&-2&3&4\\0&1&-1&-2\\0&3&-3&-6\\0&-1&1&2\end{array}\right][/tex]
R₁ = R₁ + 2R₂
[tex]\left[\begin{array}{cccc}1&0&1&0\\0&1&-1&-2\\0&3&-3&-6\\0&-1&1&2\end{array}\right][/tex]
R₃ = R₃ - 3R₂
[tex]\left[\begin{array}{cccc}1&0&1&0\\0&1&-1&-2\\0&0&0&0\\0&-1&1&2\end{array}\right][/tex]
R₄ = R₄ + R₂
[tex]\left[\begin{array}{cccc}1&0&1&0\\0&1&-1&-2\\0&0&0&0\\0&0&0&0\end{array}\right][/tex]
which is a reduced echelon form of the matrix A
now ,
[tex]\left[\begin{array}{cccc}1&0&1&0\\0&1&-1&-2\\0&0&0&0\\0&0&0&0\end{array}\right][/tex] [tex]\left[\begin{array}{cccc}x1\\x2\\x3\\x4\end{array}\right][/tex] [tex]=\left[\begin{array}{cccc}0\\0\\0\\0\end{array}\right][/tex]
therefore,
x₁ + x₃ = 0
x₁ = -x₃
x₂ - x₃ - 2x₄ = 0
x₂ = x₃ + 2x₄
so now replacing values of x₁ , x₂ in the vector matrix
[tex]\left[\begin{array}{cccc}-x3\\x3 + 2x4\\x3\\x4\end{array}\right][/tex]
we can write the above matrix as,
[tex]x3\left[\begin{array}{cccc}-1\\1\\1\\0\end{array}\right][/tex] [tex]+ x4\left[\begin{array}{cccc}0\\2\\0\\1\end{array}\right][/tex]
therefore we can say that above mentioned vector matrices are the basis of the null space of matrix A
more questions on Matrix at:
https://brainly.com/question/9967572
#SPJ10