Respuesta :

Answer:

2(x - 5)(x + 1)

Step-by-step explanation:

2x² - 8x - 10 ← factor out 2 from each term

= 2(x² - 4x - 5) ← factor the quadratic

consider the factors of the constant term (- 5) which sum to give the coefficient of the x- term (- 4)

the factors are - 5 and + 1 , since

- 5 × 1 = - 5 and - 5 + 1 = - 4 , then

x² - 4x - 5 = (x - 5)(x + 1)

then

2x² - 8x - 10 = 2(x - 5)(x + 1) ← in factored form

Answer: [tex]2(x-1)(x+5)[/tex]

Step-by-step explanation:

Factor [tex]2[/tex] out of [tex]2x^2[/tex] [tex]+~8x-10[/tex]

[tex]Factor[/tex] [tex]2 ~out~ of ~2x^2[/tex]:

[tex]2(x^2)+8x-10[/tex]

[tex]Factor ~2~ out ~of ~8x[/tex]:

[tex]2(x^2)+2(4x)-10[/tex]

[tex]Factor ~2~ out~ of ~-10[/tex]:

[tex]2x^2+2(4x)+2~x~-5[/tex]

[tex]Factor ~2~ out~ of ~2x^2+2(4x):[/tex]

[tex]2(x^2+4x)+2[/tex] × [tex]-5[/tex]

[tex]Factor ~2~out ~of ~2(x^2+4x)+2[/tex] × [tex]-5:[/tex]

[tex]2(x^2+4x-5)[/tex]

factor:

[tex]Factor ~x^2+4x-5~ using ~the ~AC~ method.[/tex]

Consider the form [tex]x^2+bx+c.[/tex] Find a pair of integers whose product is [tex]c[/tex] and whose sum is [tex]b[/tex].  In this case, whose product is [tex]-5[/tex] and whose sum is [tex]4.[/tex]

[tex]-1,5[/tex]

Write the factored form using these integers.

[tex]2((x-1)(x+5))[/tex]

Remove unnecessary parentheses.

[tex]=2(x-1)(x+5)[/tex] ← final answer